Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(9)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35564157

RESUMO

Engineered nanoscale amorphous silica nanomaterials are widespread and used in many industrial sectors. Currently, some types of silicon-based nanozeolites (NZs) have been synthesized, showing potential advantages compared to the analogous micro-forms; otherwise, few studies are yet available regarding their potential toxicity. In this respect, the aim of the present work is to investigate the potential exposure to airborne Linde Type A (LTA) NZs on which toxicological effects have been already assessed. Moreover, the contributions to the background related to the main emission sources coming from the outdoor environment (i.e., vehicular traffic and anthropogenic activities) were investigated as possible confounding factors. For this purpose, an LTA NZ production line in an industrial factory has been studied, according to the Organisation for Economic Cooperation and Development (OECD) guidelines on multi-metric approach to investigate airborne nanoparticles at the workplace. The main emission sources of nanoparticulate matter within the working environment have been identified by real-time measurements (particle number concentration, size distribution, average diameter, and lung-deposited surface area). Events due to LTA NZ spillage in the air during the cleaning phases have been chemically and morphologically characterized by ICP-MS and SEM analysis, respectively.

2.
Int J Mol Sci ; 19(2)2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29364852

RESUMO

With the increasing interest in the potential benefits of nanotechnologies, concern is still growing that they may present emerging risks for workers. Various strategies have been developed to assess the exposure to nano-objects and their agglomerates and aggregates (NOAA) in the workplace, integrating different aerosol measurement instruments and taking into account multiple parameters that may influence NOAA toxicity. The present study proposes a multi-metric approach for measuring and sampling NOAA in the workplace, applied to three case studies in laboratories each dedicated to materials with different shapes and dimensionalities: graphene, nanowires, and nanoparticles. The study is part of a larger project with the aim of improving risk management tools in nanomaterials research laboratories. The harmonized methodology proposed by the Organization for Economic Cooperation and Development (OECD) has been applied, including information gathering about materials and processes, measurements with easy-to-use and hand-held real-time devices, air sampling with personal samplers, and off-line analysis using scanning electron microscopy. Significant values beyond which an emission can be attributed to the NOAA production process were identified by comparison of the particle number concentration (PNC) time series and the corresponding background levels in the three laboratories. We explored the relations between background PNC and microclimatic parameters. Morphological and elemental analysis of sampled filters was done to identify possible emission sources of NOAA during the production processes: rare particles, spherical, with average diameter similar to the produced NOAA were identified in the nanoparticles laboratory, so further investigation is recommended to confirm the potential for worker exposure. In conclusion, the information obtained should provide a valuable basis for improving risk management strategies in the laboratory at work.


Assuntos
Poluentes Ocupacionais do Ar , Laboratórios , Nanoestruturas , Exposição Ocupacional , Local de Trabalho , Monitoramento Ambiental/métodos , Humanos , Nanoestruturas/efeitos adversos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Saúde Ocupacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...